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Abstract

I develop a model of loss aversion over electricity expenditure, from
which I derive testable predictions for household electricity consump-
tion while on combination time-of-use (TOU) and critical peak pricing
(CPP) plans. Testing these predictions results in evidence consistent
with loss aversion: (1) spillover e�ects - positive expenditure shocks
resulted in significantly more peak consumption reduction for several
weeks thereafter; and (2) clustering - disproportionate probability of
consuming such that expenditure would be equal between the TOU-
CPP or standard flat-rate pricing structures. This behavior is inconsis-
tent with a purely neoclassical utility model, and has important impli-
cations for application of time-di�erentiated electricity pricing.
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Charging a static price for retail electricity in the face of wholesale price volatil-

ity and demand fluctuations can result in electricity shortages, as well as over-

investment in, and under-utilization of, production capacity in the long run

(Borenstein, Jaske and Rosenfeld 2002; Joskow and Wolfram 2012). Time-

di�erentiated pricing mechanisms strengthen the connection between whole-

sale and retail prices, particularly during high demand hours. The simplest

is time-of-use (TOU) pricing, wherein a low price is charged during o�-peak

hours, and a higher price charged during peak hours. A further extension of

this concept is critical peak pricing (CPP), wherein the utility has the ability

to charge a very high price for peak consumption during a limited number of

critical days. This improves upon TOU pricing by providing the utilities with

a way to respond when demand projections approach the capacity constraint

of the system.1

While there are relatively few residential electricity customers currently

enrolled in time-based pricing (approximately 1 percent as of 2010), the ex-

plosion of smart-meter technology – facilitating the wide scale implementation

of such pricing options – in recent years has increased drastically (Joskow and

Wolfram 2012). In addition, there has be significant recent policy shifts paving

the way toward wide-scale implementation of time varying pricing. In particu-

lar, in California Senate Bill 695 has ruled that the California Public Utilities

Commission (CPUC) can transition residential customers onto time varying

rates starting in 2013. To this end, the CPUC has initiated a rule making

(R.12-06-013) designed to explore the way in which this transition can take
1Other examples of time-based pricing structures include real time pricing (RTP),

wherein the electricity price varies continuously throughout the day in response to wholesale
price fluctuations; and peak time rebates (PTR), which are similar to a CPP tari� except
the incentive to reduce peak consumption during critical days comes in the form of rebates
for forgone consumption rather than higher prices.
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place.

Understanding the underlying patterns of consumer behavior when placed

on these rates is increasingly important both to inform policy makers in under-

standing customer impacts when faced with time-based pricing, and to inform

electricity utilities in the design and planning of such rate plans.

An important aim of time-di�erentiated pricing is to reduce peak demand

on the handful of days in which the wholesale price for electricity is are ex-

tremely high (Joskow and Wolfram 2012), and CPP mechanisms tend to be

the most e�ective at achieving this goal (Faruqui 2010), particularly rela-

tive to other time-di�erentiated pricing mechanisms such as TOU and peak

time rebate/critical peak rebate (PTR/CPR). While time-di�erentiated tar-

i�s influence consumption through a simple price response, the psychology

and economics literature – and particularly the concept of loss aversion – may

contribute insights into why CPP specifically is so e�ective.2 Loss aversion,

a feature of reference-dependent utility, posits that consumers experience a

larger impact to their utility from a loss relative to a gain. Loss aversion is

relevant to time-based pricing because, as prices change over time, consumers

incur expenditures higher than they are used to (a loss) in some bill periods,

and lower than they are used to (a gain) in others. Loss aversion predicts that

consumers will modify their consumption in predictable and policy-relevant

ways in order to avoid high losses and to enjoy gains.

In this paper I outline a model of loss aversion over electricity expendi-

ture, test predictions from this model, and find evidence consistent with loss
2There are other possible explanations for this that cannot be explicitly addressed with

the data used in this paper. For example, price awareness or salience may be a factor, at
least in the relative e�ectiveness of CPP to TOU, if not to PTR. Jessoe and Rapson (2014)
discuss the role of awareness and salience in the context of TOU rates with and without
in-home information displays.
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aversion in the electricity consumption behavior of households participating

in a TOU-CPP pricing experiment. One prediction is that conditional on

electricity prices, households will reduce consumption of high-priced electric-

ity measurably more if they are more likely to be in the loss domain of their

value function rather than in the gain domain, and indeed I find evidence that

consumers reduce their consumption in high-priced peak hours disproportion-

ately more if they have experienced positive expenditure shocks already within

a given bill period. A second prediction is that consumption patterns will dis-

proportionately cluster bill-period expenditure at the kink in the value function

where there is zero loss or gain. Again, I show evidence of disproportionate

clustering at the kink in the reference-dependent value function (where expen-

diture is equal to what it would have been on standard prices), particularly

when prices are structured in such a way as to place households close to the

kink, and to skew their expenditure into the loss domain.3

Previous empirical work has demonstrated evidence of loss aversion in var-

ious facets of economic behavior. Two excellent review articles discussing ap-

plications of loss aversion are Camerer (2000) and DellaVigna (2009). The role

of loss aversion has been explored in several settings, including the stock mar-

ket, explanations for the equity premium puzzle (Benartzi and Thaler 1995;

Barberis, Huang and Santos 2001) and the disposition e�ect (Odean 1998;

Barberis and Xiong 2009; Li and Yang 2013); labor supply (Camerer et al.

1997; Farber 2005, 2008; Fehr and Goette 2007); employment (Mas 2006);
3In this work I examine one of many possible intersections between the literature on

demand-side management of electricity markets on the one hand, and the psychology and
economics literature on the other. Some previous empirical studies have also bridged these
two fields. A few examples are: Hartman, Doane and Woo (1991) who demonstrate evidence
of a wedge between consumer willingness to accept and willingness to pay for changes in
electricity service reliability; and Ayres, Raseman and Shih (2009), Allcott (2011), Costa
and Kahn (2013) and Allcott and Rogers (2014) who study social norms and electricity
conservation using the Opower billing mechanism.
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consumer choice, as an explanation for status quo bias in health insurance

choice (e.g., Samuelson and Zeckhauser 1988; Sydnor 2010) or the choice to

sell at a loss or not in the housing market (Genesove and Mayer 2001); and

finally, consumption behavior, as an explanation for asymmetric price elas-

ticities (Hardie, Johnson and Fader 1993). This paper contributes to this

literature by demonstrating evidence consistent with loss aversion in a new

and previously unexplored setting, namely household electricity consumption

behavior and time-di�erentiated pricing. The results in this paper are most

related to previous work on asymmetric price elasticities, however Hardie,

Johnson and Fader (1993) focus on a discrete brand choice framework, while

this paper explores implications for the sensitivity of quantity to price, based

on the probability of experiencing a loss in expenditure, on a single good from

one supplier.

This paper proceeds as follows. Section I presents the model and derives

the testable predictions; section II discusses the data; section III presents the

estimation strategy and results; section IV discusses alternative hypotheses;

and section V concludes.

I Model

I develop a model of utility and demand with reference-dependent preferences

over expenditure on electricity. I use an extension of the original Kahneman

and Tversky (1979) Prospect Theory model developed by Sugden (2003) and

Köszegi and Rabin (2006), in which utility is derived not only from outcomes

relative to a reference point, but from the level of the outcome as well.4 I
4While Kahneman and Tversky’s original model consists of four features (reference-

dependence; loss aversion; risk aversion over gains and risk seeking over losses; and dif-
ferential probability weighting), I follow the example of much of the empirical literature in
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assume that consumers “narrowly bracket” their sense of gains and losses at

the bill period level.5 This means that consumers experience either a gain or

loss over the electricity expenditure incurred during their current bill period in

addition to the direct utility they obtain from the consumption of electricity.6

The nature and malleability of reference points is a substantial area of

research, with many approaches and context-specific hypotheses – a few ex-

amples of work exploring this issue are Köszegi and Rabin (2006), Arkes et al.

(2008), Baucells, Weber and Welfens (2011), and De Giorgi and Post (2011).

I assume the reference point in this case is based o� of the standard time-

invariant electricity prices that the consumers used to face prior to the CPP

pilot. In particular, I assume that the electricity expenditure reference point

for a given consumer on a TOU-CPP pricing tari� for a given bill period is

the amount she would have paid for her realized level of consumption if she

had been charged the standard time-invariant price for electricity instead. The

intuition is that households have a sense of how much it usually costs them

to use a set of electricity services, and will base their reference point on how

much they would usually expect to pay during the bill cycle for their chosen

set of household behaviors and activities.7

this area and incorporate only reference-dependence and loss aversion (DellaVigna 2009).
5I do a robustness check of the primary results from table 4 wherein I artificially shift

the definition of the bill period forward by 14 days. These results are presented in online
Appendix G. I do this in order to test to what extent households are actually narrowly
bracketing within the bill period, and find that this assumption is too restrictive given the
results in this robustness check. However, for the purposes of the exposition of the model,
I maintain this assumption, but simply caveat that consumers are possibly using heuristics
to approximate this, given that there is a good chance they do not know exactly when their
bill periods start and stop.

6Note that I use the terms consumer and household interchangeably.
7I make the assumption that consumers have a reference point over bill period electricity

expenditure (instead of daily expenditure, for example) because the most salient expenditure
feedback most consumers receive regarding their electricity expenditure is their bill. It’s not
clear that consumers would necessarily be aware of the specific price di�erential on a daily
or hourly level.
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The following variables are taken as given: temperature during peak and

o�-peak hours along with other determinants of demand captured in the vector

x

it

; the vector of o�-peak and peak current electricity prices p

it

= (p
op,it

, p
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)Õ;

the time-invariant “reference” prices p

r,it

= (p
r,it

, p
r,it

)Õ; and income I
it

. Given

these variables, for each day t in bill period m, consumer i chooses her con-

sumption vector – measured in kilowatt-hours (kWhs) – of o�-peak and peak

electricity y

it

= (y
op,it

, y
p,it

)Õ to maximize her value function,8 shown in equa-

tion 1. The parameters ÷ and ⁄ (described in more detail below) are the pa-

rameters capturing reference-dependence and loss aversion, respectively. The

first term of equation 1 is standard consumption utility over peak and o�-peak

electricity; the second term is utility over money (or the numeraire good); and

the final bracketed term is the reference-dependent portion of utility.
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In this model, the consumer has utility over bill period expenditure on

electricity q
sœm

[yÕ
is

· p

is

] relative to a reference level of bill-period electricity

expenditure, q
sœm

Ë
y

Õ
is

· p

r,is

È
, and incurs a loss if her current expenditure on

electricity for the bill period is greater than her reference level of expenditure.

The parameter ÷ is the weight placed on the reference-dependent portion of

utility relative to the direct consumption utility. It is assumed that ÷ Ø 0,

and ÷ = 0 means the consumer has no reference-dependent utility. The loss-

aversion parameter is ⁄; it is assumed that ⁄ Ø 1, and if ⁄ = 1 then the

consumer is not loss averse – she cares equally about gains and losses relative
8“Value function” refers to consumption utility plus reference-dependent utility.
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to her reference point – whereas ⁄ > 1 means the consumer is loss averse,

meaning losses relative to her reference point weigh more heavily in her utility

than gains.

To make the model more realistic, I assume that the consumer is both

imperfect at predicting her consumption on future days, and imperfect at re-

calling her consumption for past days.9 Therefore, from the perspective of day

t, I assume y

is

= ŷ

is

≠ e

is

’s ”= t, where y

is

is consumer i’s true observed

consumption on day s ”= t; ŷ

is

is her predicted or recalled consumption, and

e

is

is her prediction/recall error. This means that from the consumer’s per-

spective, on any day t within a bill period, there is some probability she will

experience a loss that bill period (”
it

), and her value function becomes that

shown in equation 2.
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I am interested in the simple case where there has been an exogenous shock

to the probability of incurring a loss (described in more detail in section III),
9This assumption does not drive the results of the model, only allows for imperfections

in the degree to which consumers can predict their particular monthly expenditure and/or
reference point.
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so I assume ”
it

is exogenous to the day t consumption decision.10

Because I make the common assumptions of quasi-linear utility, constant

marginal utility of income,11 and risk neutrality over both losses and gains

in expenditure, the model has the convenient feature that the kink in the

value function characterizing loss aversion is only present in the linear portion

of the quasi-linear value function. This allows for a unified way, shown in

equation 3, of representing the consumer’s bill period value function for the

two alternative models: the neoclassical model (no reference-dependence), and

the reference-dependent model.
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2È
includes the

reference-dependent features of the value function. If the consumer either has

no reference-dependent utility (i.e., ÷ = 0), or is a reference-dependent con-

sumer on the standard (reference) pricing structure (i.e., p

it

= p

r,it

), then p̄

it

is

simply her true prices, and the problem collapses to the standard problem with

no reference dependence. However, if the consumer has reference-dependent
10Making ”

it

endogenous to the daily choice of y

it

would make the consumer’s optimization
problem more complicated, but would not qualitatively change the key predictions discussed
here.

11Note that the assumption of constant marginal utility of income is not unreasonable, as
the total expenditure on electricity is small relative to total income in general.
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utility and is on the time-di�erentiated pricing structure, then p̄

it

reflects the

way that reference-dependent utility di�erentially a�ects her electricity con-

sumption, depending on her reference point, degree of loss aversion, and the

probability she is in the loss domain.

Characterizing the problem in this way results in a specification of the value

function that is continuous and everywhere twice di�erentiable in p̄

it

and y

it

,

therefore any standard utility specification can be used for the consumption

utility over electricity, u (y
it

; x

it

). Any duality properties in this model hold in

terms of p̄

it

, but not in terms of true prices, p

it

. In particular, Roy’s Identity

will hold with respect to p̄

it

, but not with respect to p

it

.12

I.A Testable Prediction 1

The model predicts that the more likely it is that the consumer is in the loss

domain with respect to bill period expenditure, the lower will be her peak

consumption. To see this, note that each day t, consumer i’s optimization

problem is that shown in equation 4.
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The first order conditions for this optimization are shown in equation 5.13

12A proof of the fact that Roy’s Identity holds with respect to p̄

it

is shown in online
Appendix A.

13Recall that I assume here that ˆ”

it

ˆy
it

= 0.
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The comparative static e�ect of an exogenous increase in the probability

the consumer is in the loss domain for the bill period (”
it

) are shown in column

1 of table 1.14

Table 1: Comparative Static E�ect of an Exogenous Increase in the Probability
of a Loss

Assuming Assuming
dy

op

dp

p

= dy

p

dp

op

> 0 dy

op

dp

p

= dy

p

dp

op

= 0
(1) (2)

dy

op

d”

(÷⁄≠÷)
(1+�)

1
dy

op

dp

op

(p
op

≠ p

r

) + dy

op

dp

p

(p
p

≠ p

r

)
2

> 0 (÷⁄≠÷)
(1+�)

dy

op

dp

op

(p
op

≠ p

r

) t 0

dy

p

d”

(÷⁄≠÷)
(1+�)

1
dy

p

dp

op

(p
op

≠ p

r

) + dy

p

dp

p

(p
p

≠ p

r

)
2

< 0 (÷⁄≠÷)
(1+�)

dy

p

dp

p

(p
p

≠ p

r

) < 0

Notes: This table shows the comparative static e�ect of increasing the probability the
consumer is in the loss domain of her value function for the bill period, ”

it

, on daily peak
and o�-peak electricity demand. Column 1 shows the full comparative static e�ect in the case
of a loss-averse consumer, and column 2 shows this e�ect assuming that dy

op,it

dp

p,it

= dy

p,it

dp

op,it

= 0,
and recognizing that both dy

op

dp

op

and (p
op

≠ p

r

) are likely to be relatively small.

The comparative-static results indicate that dy

op,it

d”

it

> 0 and dy

p,it

d”

it

< 0 as long

as ÷ > 0, ⁄ > 1, p
op,it

< p
r,it

, and p
p,it

> p
r,it

. This means the model predicts

that, the higher the probability a consumer will experience a loss for the bill
14The full derivation of these comparative statics are shown in online Appendix B.
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period, the more she will decrease peak consumption and increase o�-peak

consumption within that bill period in order to avoid a loss, ceteris paribus.

However, I find very little empirical evidence in the data that o�-peak usage

is responsive to peak or o�-peak price changes, meaning that the terms dy

op,it

dp

p,it

and dy

op,it

dp

op,it

are relatively small. Additionally, (p
op,it

≠ p
r,it

) is small relative to

(p
p,it

≠ p
r,it

) in the data. Because of these reasons, the empirical predictions

simplify down to those presented in column 2 of table 1.

In sum, the first testable prediction of the model is the following: if con-

sumers are loss averse over bill period electricity expenditure, then the higher

the probability that the consumer will incur a loss in a bill period, the lower

their peak consumption will be during high-priced peak hours of that bill pe-

riod in order to avoid a loss. If the consumer is not loss averse, then ⁄ = 1,

meaning there should be no correlation between exogenous changes in the

probability the consumer is in the loss domain and the daily peak consump-

tion behavior, because ˆy

p,it

ˆ”

it

= 0 in that case.

I.B Testable Prediction 2

The second testable prediction of the model is that if consumers are loss averse,

there will be a disproportionate clustering of bill-period expenditure outcomes

near where q
sœm

[y
op,is

· p
op,is

+ y
p,is

· p
p,is

] = q
sœm

[p
r,is

· (y
op,is

+ y
p,is

)] – the

kink in the value function – particularly when households are in regions of

their consumption that place them close to the kink or would otherwise skew

them slightly into the loss domain. This section outlines the intuition for why

this is the case.

Equation 1 demonstrates how the reference-dependent value function – be-

fore the introduction of uncertainty – is kinked. If there were no uncertainty,
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this kink in the value function would be sharp. Previous work, particularly in

the area of labor supply, has posited clustering of outcomes at the kink to be a

feature of kinked constraints. This would be equally true in the case of kinked

objective functions. Mo�tt (1990) provides a useful summary of this work,

and discusses clustering at the kink in the budget constraint characterizing

retirement age decisions found by Burtless and Mo�tt (1984), and retirement

consumption found by Burtless and Mo�tt (1985). Another more recent ex-

ample with empirical evidence for this kind of bunching at kink points, here

in the context of tax schedule kink points, is provided by Saez (2010).

Because of the assumption that consumers are imperfect at controlling

their electricity demand for the bill period, and therefore experience some

uncertainty as to whether they will experience a loss or not, the kink in the

case of this full model will be a “fuzzy kink,” and could be thought of as more

of a range of the value function that has extreme curvature. Outcomes would

disproportionately cluster in this range of extreme curvature, similarly to how

they would cluster at a sharp kink.

This clustering should be more pronounced if the relative prices are such

that optimal outcomes are likely to be close to the fuzzy kink. It should partic-

ularly be more pronounced if the consumer’s expenditure would otherwise be

just skewed into the loss domain, because as we know from the first prediction

of the model, the higher the probability the consumer is in the loss domain,

the more she has an incentive is to cut back on expenditure by reducing peak

consumption. This would cause her to pull back further towards the kink

region.

The prediction of disproportionate clustering around the fuzzy kink can be

tested, as the location of the kink is determined solely by observable prices.

Therefore, the second testable prediction of this model is that, if consumers are
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loss averse over bill period expenditure on electricity, there is a disproportion-

ate clustering of outcomes just around where q
sœm

[y
op,is

· p
op,is

+ y
p,is

· p
p,is

] =
q

sœm

[p
r,is

· (y
op,is

+ y
p,is

)], particularly when households are in regions of their

consumption that place their expenditure close to the kink and otherwise would

skew their expenditure into the loss domain.

II Data

To test these predictions I use data from the California Statewide Pricing

Pilot (SPP). This pilot was a collaboration between the California Energy

Commission (CEC) and three of the state’s largest electric utilities: Pacific

Gas and Electric (PG&E); Southern California Edition (SCE); and San Diego

Gas and Electric (SDG&E). The data consist of observations between roughly

July 2003 and October 2004 of five groups: CPP High Ratio, CPP Low Ratio,

TOU High Ratio, and TOU Low Ratio treatment groups, as well as a con-

trol group.15 The control group was unaware that an experiment was being

conducted, and were charged a standard time-invariant price for electricity. I

use the term “reference price” to refer to the price control households faced,

which is the same as the price treatment households within the same utility

had been facing prior to the experiment, and would revert to if they dropped

out of the experiment. I focus primarily on the two CPP treatments (de-

scribed below), while using the TOU treatment groups and the control group

as counterfactuals.

The two CPP treatment groups were charged a relatively high peak price
15Several di�erent treatment groups were recruited for the pilot, but for this project I

focus on a subset. In the terminology used in the original pilot, the treatment groups I used
were the two CPP-F treatments and the two TOU treatments. I refer interested readers to
previous analyses of this pilot for more detail on the other treatments (Herter 2007; Faruqui
and George 2005; Charles River and Associates 2005).
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for electricity from 2 pm to 7 pm on non-holiday weekdays, and a relatively low

o�-peak price. Additionally, the utility could call a limited number of critical

peak days per season – announced the preceding day – wherein a precipitously

high price was charged during peak hours. A total of twelve critical peak days

were called during each of the two summer phases (May through October), and

three were called during the one winter phase.16 The choice to call a critical

peak day depended on a variety of factors, including weather forecasts; system

capacity and reliability; and the limit to the number of critical peak days that

could be called. Utilities could only call critical peak days on non-holiday

weekdays, but there was an attempt to call them on a variety of days of the

week within that constraint. During the first summer of the experiment all

critical peak days that were called were non-contiguous. In the second summer

there were three sets of two or more proximate critical peak days. The two

TOU treatment groups were also charged a relatively low o�-peak price and

a relatively high peak price (2 pm to 7 pm), though with no critical peak

feature.17 A table detailing all the experimental prices can be found in online

Appendix C.

The two CPP treatments were called the CPP Low Ratio (CPPL) and

CPP High Ratio (CPPH) treatments. The di�erence can be seen in figure

1, which plots the prices for non-CARE18 PG&E customers in the two CPP

treatments over the course of the pilot. The design of the prices was such that

the CPPH treatment was expected to have relatively low expenditure in the
16This was true for PG&E and SDG&E, but SCE shifts from summer to winter pricing

slightly earlier than the other two utilities, so three of the CPP days called that were in the
summer of 2003 for the other two utilities were actually in the winter pricing phase for SCE.

17In the case of both the CPP and TOU tari�s, all consumption on weekends and holidays
was charged at the o�-peak price.

18CARE stands for California Alternate Rates for Energy, and is a program designed to
provide price relief to low-income households.
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summer and relatively high expenditure in the winter, while the opposite was

true for the CPPL treatment. The critical peak prices are shown as points in

the figures to demonstrate the frequency and timing of critical peak days.

Price data came from historic advice letters submitted by the utilities to the

California Public Utilities Commission. California has an increasing block rate

pricing structure for electricity. The time-based treatment prices consisted of a

series of surcharges or credits overlaid onto this block rate structure, and were

constant across the tiers. Because the theory of loss aversion used to motivate

this analysis is primarily interested in prices relative to the reference price,

the block rate structure is not directly relevant to my results. Additionally,

previous research has shown that customers are not aware of, and do not

respond to, the marginal price in their tiered structure, but rather respond to

an averaged price (Ito 2014). I therefore conduct the analysis using the flat

average price across the tiers. It is this average price that is plotted in figure

1 and reported in online Appendix C.
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CPP Low and High Ratio Rates: PG&E Non−CARE

Figure 1: CPP Treatment Prices

Notes: This figure depicts the experimental prices faced by CPPH and CPPL non-CARE
households in the PG&E service territory during the SPP experiment. “OP,” “P,” and
“CP” refer to o�-peak, peak, critical peak, respectively. “Reference Price” refers to the
price charged to the control households. The frequency of critical peak pricing days is
depicted in the points showing the critical peak prices. The prices shown are the average
prices across the block rate tiers. The vertical lines represent the dates on which the pricing
changed from summer to winter or vice versa.

The data include detailed electricity usage at 15-minute increments, which

I identify as peak or o�-peak usage, and aggregate up to the daily or bill

period level. In addition, each household was matched to hourly temperature

data from one of 56 weather stations. I construct a degree-hour measure of

temperature within the peak and o�-peak periods for each day. This measure

is constructed similarly to the more commonly used degree-day measure, but

separately for the peak and o�-peak periods each day.19

19The degree-hour temperature measure is constructed in the following way: dh

op,t

=
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There are two main problems with the data from this experiment. First,

there was some concern that households were unclear as to when precisely the

experimental pricing started (Letzler 2010). I therefore drop observations from

July 2003 (the initial month of the experiment). Second, the treatment groups

were recruited to participate, while the control group was randomly selected

from the population. This introduces an issue of selection into treatment.

While I do use the control group as a comparison group, I run the same analyses

using the TOU treatment groups as a counterfactual. This strengthens the

comparability of the CPP and counterfactual groups, as they both selected

into treatment.20

Table 2 shows summary statistics for the relevant variables. As one would

expect, the treatment groups used less peak electricity on average than the

control group during the experiment, and even at this aggregate level the

di�erence is marginally significant. The di�erence in the o�-peak electricity

consumption between the four groups at this aggregate level is not statistically

significant. This suggests broadly that the treatment did not induce a large

amount of consumption shifting from peak to o�-peak, the implication of which

is that the own-price elasticity of o�-peak, and cross-price elasticity between

peak and o�-peak, consumption are not large.

|Mean (Temp

hœop,t

) ≠ 65| and dh

p,t

= |Mean (Temp

hœp,t

) ≠ 65|, where dh

op,t

is the degree-
hour temperature measure during o�-peak hours on day t, dh

p,t

is the same measure but for
peak hours on day t, Mean (Temp

hœop,t

) is average temperature during the o�-peak hours
of day t and Mean (Temp

hœp,t

) is the same for peak hours on day t.
20Online Appendix D outlines additional data cleaning determinations that were made,

and presents robustness checks of the primary regressions reported in the paper to test the
relevance of some of the data irregularities, none of which significantly change the results.
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Table 2: Summary Statistics

Mean SD Mean SD Mean SD Mean SD
Average kWh per Day in 2002a 22.809 14.875 21.638 13.423 22.125 15.194 22.579 15.257
Off-Peak kWh per Dayb 16.796 12.718 16.487 12.021 16.315 13.230 16.380 12.967
Peak kWh per Dayb 5.362 5.388 5.396 5.494 5.468 5.823 6.158 6.588
Bill Totalb 88.024 68.490 87.559 69.437 91.869 75.938 96.583 79.686
Off-Peak Degree-Hoursb 8.691 6.361 8.611 6.287 8.908 6.195 8.917 6.292
Peak Degree-Hoursb 12.442 9.256 12.267 9.247 12.074 9.427 12.418 9.678
PG&E Customer 0.485 0.500 0.489 0.500 0.624 0.485 0.547 0.498
SCE Customer 0.424 0.494 0.411 0.492 0.376 0.485 0.377 0.485
SDG&E Customer 0.091 0.287 0.101 0.301 0 0 0.076 0.265
Number of Observations 115109 118640 86590 152903
Number of Households 321 345 240 418

TOU ControlCPP High Ratio CPP Low Ratio

Notes: The two CPP treatments are the groups of interest in this study. The experimen-
tal TOU group and the control group are both used as counterfactuals. “Bill Total” is
the average total bill-period expenditure, not including fixed charges or taxes, during the
experiment. “SD” refers to standard deviation.
a Pretreatment
b During Treatment Period

Note that these four groups are comparable in terms of the pretreatment

average daily usage from the summer of 2002, and in terms of temperature

levels faced during treatment. However, the TOU group di�ers from the CPPH

and CPPL groups based on other observables (as they were much more likely

to come from the PG&E region, which means they are more likely to be from

Northern California relative to the CPP groups). For this reason I use both

the TOU and control groups as counterfactuals.

III Testing Model Predictions

In this section I present both the strategies I use to test the two predictions

from the model, and the results from this analysis.
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III.A Testable Prediction 1

Recall the first prediction from the model: The more likely it is the consumer is

in the loss domain with respect to bill period expenditure for a given bill period,

the more she will reduce her daily peak consumption within that bill period,

ceteris paribus. To test this, I need an exogenous shock to the probability the

consumer experiences a loss. In particular, I need an observable variable that

is correlated with the probability of the household being in the loss domain

for the bill period, but uncorrelated with electricity consumption on any given

day.

Recall that I define a loss to be if the consumer paid more for her chosen

electricity consumption in a given bill period than she would have for the

same level of consumption on the standard pricing structure. Using a linear

probability model, I regress an indicator variable – equal to one in the case a

household incurred a loss during that bill period and zero otherwise – on the

following variables: the share of the bill period that is considered “summer” in

terms of the pricing structure (equal simply to zero or one for the majority of

bill period observations); the number of critical peak days called in a given bill

period; the average number of degree-hours in the peak and o�-peak hours;

and household fixed e�ects. I run this regression separately for the CPPH and

CPPL households. The results for these regressions are presented in table 3.
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Table 3: Linear Probability of Incurring a Bill Period Loss
(1) (2)

Dependent Variable: Loss (0,1) CPP High Ratio CPP Low Ratio

Critical Peak Days (Number in Bill Period) 0.0350*** 0.0773***
(0.00395) (0.00460)

Summer Pricing (Share of Bill Period) -0.798*** 0.400***
(0.0256) (0.0268)

Peak Temperature 0.00649*** 0.00532***
(0.00209) (0.00165)

Off-Peak Temperature 0.00291 -0.00856***
(0.00181) (0.00150)

Constant 0.680*** 0.0288
(0.0258) (0.0250)

Household fixed effects Y Y

Observations (bill periods) 4,067 4,194
Total Number of Households 321 345
R-squared (within) 0.549 0.538

Notes: The dependent variable is a bill-period-level indicator variable of whether or not the
household incurred a loss that bill period. Standard errors clustered at household level are
shown in the parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.

The results in table 3 demonstrate that first, CPPH households were more

likely to experience a loss in the winter pricing phase, while CPPL households

were more likely to experience a loss in the summer pricing phase. This was

intentional in the design of the experimental pricing. This is relevant, and will

be discussed further in section III.B. Second, higher o�-peak degree-hours

had a significant negative e�ect on the probability of a loss only for the CPPL

group. Third, the number of critical peak days experienced in a given bill

period had a significant positive e�ect on the probability of a loss for both

groups; for each additional critical peak day experienced in a bill period, the
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probability that the average household will experience a loss is increased by

3.5 and 7.73 percentage points for the CPPH and CPPL groups, respectively.

Finally, the higher the number of degree-hours (a positive demand shock) in

the high-priced peak hours, the more likely the households would incur a loss.

The standard deviation for the peak degree-hour measure is between 9 and

10 for all groups. Therefore, according to these results, an increase in average

peak degree-hours of one standard deviation would increase the probability of

a loss by about 6.4 and 5.3 percentage points for the CPPH and CPPL groups,

respectively.

Informed by the results from table 3, I define four variables for each day in

the sample: (i) the number of critical peak days called so far in the bill period;

(ii) the number of critical peak days called in the first week of the bill period;

(iii) the average peak degree-hour temperature measure in the first week of the

bill period; and (iv) the average o�-peak degree-hour temperature measure in

the first week of the bill period. I run regressions using each of the first three

of these variables separately as exogenous positive shocks to the probability

of a loss for the bill period. Additionally, I run one more regression using the

last as a weak negative shock to the probability of a loss.

In all approaches I limit the analysis to the days in which peak hours

are charged at peak prices (i.e., I eliminate weekends and holidays from the

analysis). Additionally, to avoid issues of mean reversion, I limit the analysis

to days at least one week after the shock to the probability of a loss occurred.21

Finally, I compare the consumption of households in the treatment group to

the consumption of a counterfactual group (either the control or TOU group)
21When using the number of critical peak days so far in a bill period, I limit the analysis

to only days at least one week after the last critical peak day experienced, and for the three
variables measuring critical peak days or degree-hours in the first week of a bill period, I
limit the analysis to the third and fourth weeks of the bill period.
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that did not experience critical peak pricing.

I use the estimating equation shown in equation 6. In this equation i

denotes a household; t denotes a day; y
p,it

, measured in kWhs, is daily peak

electricity consumption; D
it

is one of the four shocks to the probability of a

loss defined above; C
it

œ {0, 1} is an indicator variable of whether or not the

utility for household i called a critical peak day on day t; and T
i

œ {0, 1} is an

indicator variable of whether or not household i is in one of the critical peak

treatment groups. In the vector x

p,it

I control for peak temperature measured

in degree-hours on day t for household i; month-of-year e�ects; day-of-week

e�ects; and whether day t for household i is in the summer or winter pricing

phase. For the regressions using peak (o�-peak) degree-hours in the first week

of the bill period as a shock to the probability of a loss, I control for the o�-

peak (peak) degree-hours in the first week of the bill period as well. Finally, I

include household fixed e�ects, “
i

. The parameters in the model are a, d, and

b
k

, k œ {1, ..., 4}.

y
p,it

=a + d

Õ · x

it

+ b1Cit

+ b2Dit

+ b3Ti

ú C
it

+ b4Ti

ú D
it

+ “
i

+ Á
it

(6)

The parameter of primary interest is the b4 coe�cient on T
i

ú D
it

. Loss

aversion would predict that this parameter be negative when D
it

is a positive

shock to the probability of a loss, meaning that the higher the probability of a

loss due to previous expenditure shocks, the less peak electricity the household

will consume subsequently in the bill period. In the case of a negative shock

to the probability of a loss, b4 would be expected to be positive.

Tables 4 presents the results from four versions of regressions based on
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equation 6.22 Columns 1 and 2 show the results using the number of critical

peak days so far in the bill period as a positive shock to the probability of a

loss; columns 3 and 4 show the results using the number of critical peak days

in the first week of the bill period as a positive shock to the probability of a

loss; columns 5 and 6 show the results using average peak degree-hours in the

first week of the bill period as a positive shock to the probability of a loss; and

finally columns 7 and 8 show the results using average o�-peak degree-hours

in the first week of the bill period as a weak negative shock to the probability

of a loss. Columns 1, 3, 5, and 7 present the results when the control group

is used as the counterfactual, while columns 2, 4, 6, and 8 show results when

the TOU group is used as the counterfactual.

The results in table 4 are relatively stable and comply with intuition:

households consume more peak electricity when peak degree-hours are higher.

Households consume more peak electricity on critical peak days, but treatment

households respond to the higher critical peak prices and consume less (by 1.1

to 1.44 kWh relative to control households, which is about 20 percent of av-

erage daily peak electricity consumption) than control households on critical

peak days.

The null hypotheses of no loss aversion are that the coe�cients on T
i

ú D
it

equal zero. This null can be rejected in the first three sets of peak demand

regressions relative to the control group. Looking at columns 1, 3, and 5 in

table 4, consistently consumers reduce their peak consumption more relative

to the control group if they have experienced a previous positive shock to the
22I run the same regressions with o�-peak consumption as the dependent variable, the

results of which can be found in online Appendix E. There are no significant loss-aversion
results in these o�-peak demand regressions, which is consistent with the model assuming
little to no cross-price elasticity of o�-peak consumption to peak prices (an assumption
supported by the lack of significant impacts of critical peak prices on o�-peak consumption).
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probability of a loss. This is consistent with the model of loss aversion and

not consistent with the standard neoclassical model. In particular, focusing

first on column 1, an increase in the number of critical peak days experienced

so far in a bill period by one day decreases the amount of peak electricity

the household consumes subsequently in the bill period by 0.0914 kWhs per

day (1.68 percent of average daily peak electricity consumption) on average

for the CPP treatment groups relative to the control group. Column 3 shows

that a one-day increase in the number of critical peak days experienced in

the first week of the bill period resulted in a decrease in the peak electricity

consumed on average in the last weeks of the bill period by 0.236 kWhs per

day (4.37 percent of average daily peak consumption) for the CPP treatment

groups relative to the control group. Finally, as shown in column 5, an increase

of one degree-hour on average in the peak hours during the first week of the

bill period resulted in a decrease in peak electricity consumption in the last

weeks of the bill period of 0.0649 kWhs per day on average (1.20 percent) for

the CPP treatment group relative to the control group.

When the average o�-peak degree-hours in the first week of the bill period

are used as a negative shock to the probability of a loss – results for which are

presented in column 7 using the control group as the counterfactual – there is

no significant a�ect on subsequent peak consumption during that bill period,

though the sign of the coe�cient is positive. This variable shows only a weak

negative correlation with the probability of a loss, as it was only significant

for the CPPL group in table 3. It is therefore not surprising that the e�ect is

not significant here. However, it serves to support the validity of the results

in columns 1, 3, and particularly 5, as it demonstrates that these results are

not simply spurious correlations based on household behavior following what

happened to have been hot days, for example.
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Table 4: Peak kWh Usage Adjustment Following Shock to Loss Probability

Dependent Variable: T=0: Control T=0: TOU T=0: Control T=0: TOU T=0: Control T=0: TOU T=0: Control T=0: TOU
Peak kWh (1) (2) (3) (4) (5) (6) (7) (8)

C 1.027*** 0.442*** 0.597*** 0.300* 0.573*** 0.365*** 0.720*** 0.430***
(0.141) (0.152) (0.117) (0.155) (0.0989) (0.131) (0.118) (0.156)

D 0.0512* 0.0704** 0.0584 0.0662 0.0920*** 0.0696*** 0.0351** 0.0210
(0.0286) (0.0354) (0.0658) (0.0797) (0.0122) (0.0147) (0.0153) (0.0191)

T * C -1.438*** -0.690*** -1.296*** -0.789*** -1.112*** -0.771*** -1.358*** -0.862***
(0.191) (0.191) (0.173) (0.196) (0.141) (0.163) (0.175) (0.198)

T * D -0.0914*** -0.0851** -0.236*** -0.170** -0.0649*** -0.0292 0.00640 0.0120
(0.0345) (0.0412) (0.0729) (0.0863) (0.0167) (0.0189) (0.0145) (0.0177)

Summer Pricing -0.0896 -0.0894 0.118 0.0706 0.0780 0.0190 0.0769 0.0221
(0.0743) (0.0768) (0.0833) (0.0848) (0.0840) (0.0853) (0.0836) (0.0850)

Peak Degree-Hours 0.172*** 0.155*** 0.191*** 0.170*** 0.171*** 0.153*** 0.172*** 0.153***
(0.00748) (0.00783) (0.00803) (0.00838) (0.00684) (0.00709) (0.00687) (0.00712)

Off-Peak Degree-Hours 0.0369*** 0.0297**
        in Week 1 (0.0113) (0.0122)
Peak Degree-Hours 0.0538*** 0.0490***
        in Week 1 (0.00602) (0.00601)
Constant 4.235*** 3.996*** 3.956*** 3.758*** 3.362*** 3.256*** 3.332*** 3.235***

(0.120) (0.128) (0.141) (0.148) (0.181) (0.192) (0.182) (0.194)

Day-of-week effects Y Y Y Y Y Y Y Y
Month-of-year effects Y Y Y Y Y Y Y Y
Household fixed effects Y Y Y Y Y Y Y Y

Daily Observations 191,839 159,244 149,344 123,564 149,344 123,564 149,344 123,564
R-squared (within) 0.164 0.143 0.180 0.159 0.189 0.166 0.186 0.165
Average Peak kWh/day 5.45 5.12 5.4 5.1 5.4 5.1 5.4 5.1
Num. of Households (T=1) 666 666 655 655 655 655 655 655
Num. of Households (T=0) 418 240 416 237 416 237 416 237
Total Number of Households 1,084 906 1,071 892 1,071 892 1,071 892

D = Number of critical 
peak days so far

D = Number of critical 
peak days in Week 1

D = Peak degree-
hours in Week 1

D = Off-Peak degree-
hours in Week 1

Notes: The dependent variable is daily peak kWh usage. C is an indicator variable for the
occurrence of a critical peak day; D is one of the four exogenous shocks to the probability
of a loss; and T is an indicator variable equal to one for households in the pooled CPPL
and CPPH treatment groups and equal to zero for households in the control and TOU
counterfactual groups. Eight CPPH, three CPPL, two control, and three TOU households
who appeared in the columns 1 and 2 regressions are dropped from the regressions presented
in columns 3 through 8 because they have no observations in the third and fourth week of
a bill period. A total of only 0.07 percent of observations are dropped due to the exclusion
of these thirteen households. Standard errors clustered at the household level are shown in
the parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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The same set of peak demand regressions using the TOU treatment group

as the counterfactual can be seen in table 4 in columns 2, 4, 6, and 8. When

the TOU group is used as the counterfactual the sign of the coe�cient on

T
i

ú D
it

is the same as when the control group is used as the counterfactual in

all cases. However, this coe�cient is only significantly di�erent from zero in

the two regressions using measures of previous critical peak days experienced

shown in columns 2 and 4. The results indicate that an increase in the previous

number of critical peak days experienced so far in the bill period by one day

was associated with a reduction of 0.0851 kWh of peak consumption during

subsequent peak hours relative to TOU households. This is 1.58 percent of

average peak consumption. Additionally, a one-day increase in the number of

critical peak days experienced in the first week of the bill period was associated

with a reduction of 0.17 kWh (3.15 percent of average daily peak consumption)

of peak electricity consumption relative to the TOU group. When shocks to the

probability of a loss are in the form of higher peak degree-hours, the coe�cient

on T
i

ú D
it

is not significantly di�erent from zero when the TOU group is the

counterfactual. This makes sense. First, the TOU group is smaller than the

control group, and so power is reduced. Second, the TOU group is also on an

experimental pricing structure wherein higher prices are charged in peak hours

and lower prices charged in o�-peak hours. Therefore, shocks in the form of

more critical peak days called would not increase the probability of a TOU

household incurring a loss, but higher peak degree-hours would increase the

probability of a TOU household themselves incurring a loss. Therefore, higher

peak degree-hours in the first week of a TOU customer’s bill period could also

have induced her to cut back disproportionately on peak consumption later in

the bill period in order to avoid her own loss. This is indicated by the fact

that the coe�cient on D
it

is smaller for the TOU group in column 6 than for
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the control group in column 5.

This analysis demonstrates evidence that when there is a higher probability

a household is in the loss domain due to previous positive exogenous shocks

to bill period expenditure in the form of higher previous peak degree-hours,

or more previous critical peak days, households cut back more on subsequent

peak consumption.23 This result is consistent with the model of loss aversion

over electricity expenditure.

III.B Testable Prediction 2

Recall that section I.B outlined the model prediction that a disproportionate

number of bill period expenditure outcomes should occur around the kink in

the value function; particularly when prices are such that households tend to

be otherwise located close to the fuzzy kink and skewed into the loss domain.

Recall that the kink is around where q
sœm

[y
is

· p

is

] = q
sœm

Ë
y

is

· p

r,is

È
.

Note that this is equivalent to saying that expenditure net of reference ex-

penditure is equal to zero (q
sœm

[y
is

· p

is

] ≠ q
sœm

Ë
y

is

· p

r,is

È
= 0). Both the

CPPH and CPPL expenditure outcomes tend to be quite close to the kink

throughout the experiment.24 More compelling is that the CPPH treatment

was designed such that households should be in the gain domain in the summer

and be in the loss domain in the winter, whereas the CPPL treatment rates

were designed so that they should be in the gain domain in the winter and the
23Robustness checks were run that omitted di�erent subsets of the data. The results for

these robustness checks are presented in online Appendix D, along with an explanation of
why those checks were run. In all cases the results remain consistent with the primary
regressions presented in table 4.

24The share of outcomes within $13.2 (15 percent of the average bill) of the kink are 69
percent and 92 percent for the CPPH group during the summer and winter pricing phases,
respectively. Conversely, for the CPPL treatment, 90 percent and 89 percent are in this
range during the summer and winter pricing phases, respectively.
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loss domain in the summer (Charles River and Associates 2005). The model

predicts that we are more likely to see clustering in the season not only when

households tend to be close to the kink, but also when they might otherwise

have been skewed into the loss domain.

The treatment prices were constructed in such a way as to explicitly avoid

large losses.25 Therefore, clustering around the kink could occur by construc-

tion of the treatment tari�s themselves, and not because of household behavior.

To ascertain whether the degree of clustering around the kink is disproportion-

ately due to household behavior, rather than simply coincidental, I construct

what I refer to as a counterfactual net expenditure by determining what con-

trol households would have spent if charged treatment prices minus what they

actually spent having been charged control (reference) prices. Theoretically,

the di�erence in the distribution of the treatment net expenditure (actual mi-

nus reference) and the counterfactual net expenditure should reflect behavioral

change instigated by the treatment prices. I do the same process using the

TOU households as the counterfactual as well.26 These results are shown in

figures 2 and 3.

In figures 2 and 3 the net-expenditure bins have widths of $8.8,27 with the [-

4.4,4.4] bin centered at $0 and considered to be “the kink.” Figures 2 and 3 plot

the mid-points of these bins on the horizontal axis, and the di�erence in share

of bill-period net-expenditure observation in that bin between the treatment

and counterfactual groups on the vertical axis. Results indicate that in winter
25The experimental rates had to meet three requirements: be revenue-neutral for the

average customer over the year assuming unchanged load shape; not change the bills by more
than 5 percent assuming unchanged load shape; and provide customers with the opportunity
to save 10 percent on their bills if they reduced peak consumption by 30 percent (Charles
River and Associates 2005).

26The TOU counterfactual net expenditure is TOU usage expenditure if charged CPP
prices less TOU usage expenditure if charged control prices.

2710 percent of average bill totals for the CPP groups.
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for the CPPH and summer for the CPPL groups there is clustering beyond

that of the two counterfactuals right around the kink. These two phases are

when the households were most likely to be located close to the kink, and

otherwise skewed into the loss domain. The di�erences in the percent of net-

expenditure outcomes for treatment households at the kink relative to the

control counterfactual were 8.42 percent for CPPH in the winter and 11.36

percent for CPPL in the summer (2.14 percent for CPPH in the winter, and

4.82 percent for CPPL in the summer, relative to the TOU counterfactual).

This pattern of clustering was not the case in the summer for the CPPH and

winter for the CPPL groups, times in which these treatment groups were less

likely to incur losses.

I test whether the degree of clustering observed for the CPPH group in

the winter and CPPL group in the summer is statistically larger than the

control and TOU counterfactuals by bootstrapping the distribution of the

fraction of observations within the [-4.4,4.4] bin for each group.28 A two-

sample di�erence-in-means test, shown in table 5, demonstrates that indeed

the probability of CPPL summer and CPPH winter outcomes being right

around the kink are both statistically higher than the corresponding control

and TOU counterfactual probabilities at the 99 percent confidence level.
28I drew with replacement a sample of households equal in number to the number of

households in the data. I do this within each treatment and pricing phase separately.
I repeated this process 2,000 times, recording the share of total observations with net-
expenditure outcomes in the range [-4.4,4.4] for each case for all 2,000 repetitions. The
resulting set of 2,000 data-points in each case made up the distribution of the probability of
the share of net-expenditure observations at the kink in each case, clustered at the household
level.
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Figure 2: CPPH Bill Period Expenditure Clustering

Notes: This figure shows CPPH results for clustering around the kink. Both the con-
trol (solid line) and TOU (dashed line) households are used as counterfactuals. The
center-points of bins with widths of $8.8 representing net-expenditure (
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) are plotted on the horizontal axis. The share of treatment bill-period

net-expenditure observation in that bin minus the share of counterfactual bill-period net-
expenditure observations in that bin are plotted on the vertical axis. The bin centered at
zero and including the range [-4.4,4.4] is considered to be the “fuzzy kink” in the value func-
tion. Positive net-expenditure values are in the loss domain, while negative net-expenditure
values are in the gain domain. The top panel shows bill periods in which more than 50
percent of the days were charged at winter prices, while the bottom panel shows bill periods
that have more than 50 percent of days were charged at summer prices.
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Figure 3: CPPL Bill Period Expenditure Clustering

Notes: This figure shows CPPL results for clustering around the kink. Both the con-
trol (solid line) and TOU (dashed line) households are used as counterfactuals. The
center-points of bins with widths of $8.8 representing net-expenditure (
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) are plotted on the horizontal axis. The share of treatment bill-period

net-expenditure observation in that bin minus the share of counterfactual bill-period net-
expenditure observations in that bin are plotted on the vertical axis. The bin centered at
zero and including the range [-4.4,4.4] is considered to be the “fuzzy kink” in the value func-
tion. Positive net-expenditure values are in the loss domain, while negative net-expenditure
values are in the gain domain. The top panel shows bill periods in which more than 50
percent of the days were charged at winter prices, while the bottom panel shows bill periods
that have more than 50 percent of days were charged at summer prices.
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Table 5: Bootstrapped Distributions of Share of Outcome at the Kink

Treatment Treatment

Treatment Control TOU vs. Control vs. TOU

Mean SD Mean SD Mean SD t-stat t-stat

CPPH Winter 0.59 0.02 0.51 0.02 0.57 0.03 51.52*** 9.51***

CPPL Summer 0.69 0.02 0.58 0.02 0.65 0.02 92.25*** 30.19***
Notes: Bootstrapped mean and standard deviations of the probability that a net-
expenditure outcome will be within $4.4 of zero for the CPPH treatment in the winter
pricing phase and the CPPL treatment in the summer pricing phase. The standard devia-
tions are clustered at the household level by construction in the bootstrapping process, and
significance is based on a t-test of the di�erence in means.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.

One might suggest that demonstrating clustering in this way would only

indicate that the curvature of the utility function was extreme, but would not

necessarily imply loss aversion. However, for clustering to result near where
q

sœm

[y
is

· p

is

]≠q
sœm

Ë
y

is

· p

r,is

È
= 0 from simply an extremely curved utility

function, one would have to assume that the location of the extremely curved

ridge in the utility function be the same for everyone, and happen to corre-

spond to where expenditure (given di�ering prices and demand shifters) was

equal to what it would have been on reference prices. There is no immediate

reason, beyond the loss aversion model proposed in this paper, why this should

be the case. Therefore, there is evidence that treatment households did ex-

hibit statistically significant disproportionate clustering around the kink with

respect to bill period expenditure during phases that were more likely to place

them close to the kink and otherwise skew them into the loss domain.
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IV Alternate Hypotheses

In the preceding sections I have demonstrated that consumers on the CPP

treatments in the SPP experiment exhibited behavior consistent with a model

of loss aversion over electricity expenditure. In this section I test two alter-

native hypotheses regarding the disproportionate reduction in peak electricity

consumption following positive expenditure shocks in a given bill period.

IV.A Learning Strategies to Reduce Peak Consumption

In section III.A I showed that when households on the CPP experimental

tari�s have experienced more critical peak days in a given bill period, they

disproportionately cut back on subsequent peak electricity consumption. This

behavior is consistent with the model of loss aversion over electricity expendi-

ture presented in this paper. However, if households learned better strategies

for reducing peak electricity consumption after experiencing more critical peak

days, this could also explain the empirical results presented above. To explore

this question, I present the results from two alternative specifications in table

6: In the first, I control simply for the total number of critical peak days ex-

perienced so far in the pilot overall, and in the second I allow this variable to

enter quadratically.29

29The results presented here are for the case with the control group as the counterfactual.
I provide the results using the TOU group as the counterfactual in online Appendix F.

34



Table 6: Learning vs. Loss Aversion: CPP vs. Control
T=1: CPP
T=0: Control
Dependent Variable: 
Peak kWh

(1) (2) (3) (4) (5) (6)

C 1.014*** 0.992*** 0.601*** 0.544*** 0.578*** 0.555***
(0.142) (0.140) (0.116) (0.109) (0.0976) (0.0959)

D 0.0614** 0.0346 0.0701 -0.00904 0.0926*** 0.0878***
(0.0265) (0.0259) (0.0628) (0.0648) (0.0122) (0.0126)

T * C -1.438*** -1.400*** -1.293*** -1.201*** -1.111*** -1.074***
(0.192) (0.187) (0.170) (0.159) (0.139) (0.135)

T * D -0.0878*** -0.0378 -0.232*** -0.0982 -0.0652*** -0.0571***
(0.0327) (0.0307) (0.0696) (0.0706) (0.0166) (0.0176)

E -0.00809 -0.0949*** -0.00682 -0.135*** -0.00982 -0.0794**
(0.00881) (0.0259) (0.0102) (0.0381) (0.0104) (0.0367)

E2 0.00340*** 0.00478*** 0.00258**
(0.000991) (0.00134) (0.00126)

T * E -0.00189 0.114*** -0.00153 0.183*** 0.00179 0.0986**
(0.0105) (0.0320) (0.0125) (0.0447) (0.0124) (0.0435)

T * E2 -0.00458*** -0.00702*** -0.00366**
(0.00119) (0.00163) (0.00154)

Summer Pricing -0.0917 -0.0789 0.116 0.140* 0.0779 0.0901
(0.0742) (0.0743) (0.0831) (0.0828) (0.0839) (0.0837)

Peak Degree-Hours 0.172*** 0.172*** 0.191*** 0.191*** 0.171*** 0.172***
(0.00748) (0.00749) (0.00802) (0.00802) (0.00684) (0.00685)

Off-Peak Degree-Hours 0.0356*** 0.0354***
        in Week 1 (0.0114) (0.0114)
Constant 4.345*** 4.423*** 4.051*** 4.146*** 3.472*** 3.530***

(0.126) (0.154) (0.145) (0.215) (0.185) (0.247)

Day-of-week effects Y Y Y Y Y Y
Month-of-year effects Y Y Y Y Y Y
Household fixed effects Y Y Y Y Y Y

Daily Observations 191,839 191,839 149,344 149,344 149,344 149,344
R-squared (within) 0.164 0.164 0.180 0.181 0.189 0.190
Number of Households 1,084 1,084 1,071 1,071 1,071 1,071

E = overall number of critical days so far

D = Number of critical 
peak days so far

D = Number of critical 
peak days in Week 1

D = Peak degree-
hours in Week 1

Notes: The dependent variable is daily peak kWh usage. C is an indicator variable for the
occurrence of a critical peak day; D is one of the four exogenous shocks to the probability
of a loss; and T is an indicator variable equal to one for households in the pooled CPPL
and CPPH treatment groups and equal to zero for households in the control counterfactual
group. Columns 1, 3, and 5 control for the total number of critical peak days experienced
in the pilot overall (E and T ú E), and columns 2, 4, and 6 allow these variables to enter
quadratically. Standard errors clustered at household level are shown in the parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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The results from this analysis are quite interesting. First, when the overall

past experience of critical peak days for the treatment group (T ú E) enters

linearly – shown in columns 1, 3, and 5 of table 6 – the coe�cients on this term

are never significant, and additionally there is almost no di�erence in the coef-

ficient on T úD compared to the original specification shown in table 4. When

the experience of overall past critical peak days enters quadratically – shown in

columns 2, 4, and 6 – the coe�cient on T ú E is significantly greater than zero

in all specifications. This means that, rather than more experience of critical

peak days overall resulting in increasingly less peak consumption, which would

be consistent with learning, these results indicate that more critical peak days

experienced overall is correlated with a subsequent relative increase in peak

consumption. This is not consistent with learning better strategies to reduce

peak consumption. What then could explain these results?

Köszegi and Rabin (2006) suggest that consumers do not have a stagnant

reference point, but rather update their reference point based on expectations

formed by recent experience. In the SPP pilot setting, if households became

more accustomed to expenditure fluctuations as a result of critical peak days,

then they may update their reference expenditure to reflect this. This updating

of the reference point would explain a gradual relaxing of the degree to which

households mitigate peak electricity consumption when they are exposed to

more critical peak days.

The coe�cient on T úD is no longer significant in columns 2 and 4, possibly

due to correlation with E. However, in column 6 higher peak degree-hours in

the first week of the bill period still significantly correlates with lower subse-

quent peak consumption in the bill period relative to the control group. This

is consistent with households updating their reference point with respect to

experiencing critical peak days, but still responding when there is a higher
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probability of a loss, even given an updated reference point, as a result of

exogenous weather shocks.

This analysis suggests that learning better strategies to reduce peak con-

sumption cannot explain the original results that households cut back on

peak consumption after experiencing more critical peak days in a bill period.

Rather, the results indicate that households may actually reduce the degree

to which they are curbing peak consumption the more they get used to be-

ing charged higher peak prices. This is still consistent with households having

loss-averse preferences, but suggests that they may be updating their reference

point to reflect more familiarity with the CPP pricing tari�.

IV.B Constrained Budget

In this section I address the possible alternative explanation that households

cut back on peak electricity consumption after previous positive shocks to

expenditure in the bill period not because they are loss averse, but rather

because they would experience high penalties if they spend more than they

are expecting to on electricity.

I split the households into CARE and non-CARE households. The latter

group I further subdivide by income level. The majority of CARE households –

which faced lower prices than non-CARE households – have household incomes

less than $25,000 annually in my sample. Income levels are not observed for

all households in the data.30 Of non-CARE households 83 and 85 percent

of CPP and TOU households, respectively, completed the income portion of

the survey, as did 65 percent of control households. Just over 60 percent

non-CARE households made between $25,000 and $100,000 per year.
30The income variable was obtained through a survey that was not returned by all par-

ticipants.
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Table 7: Budget Constrained vs. Loss Averse: CPP vs. Control
T=1: CPP
T=0: Control
Dependent Variable: Peak kWh

C * (CARE) 0.392 (0.408) 0.166 (0.416) 0.305 (0.338)
C * (Income<25,000) 0.566 (0.735) 0.171 (0.527) 0.200 (0.362)
C * (25,000<Income<50,000) 0.627* (0.357) 0.330 (0.344) 0.449 (0.292)
C * (50,000<Income<75,000) 1.477*** (0.381) 1.242*** (0.368) 1.095*** (0.304)
C * (75,000<Income<100,000) 1.471*** (0.516) 1.372** (0.600) 1.290*** (0.469)
C * (100,000<Income<150,000) 1.796*** (0.667) 1.085** (0.484) 1.061** (0.421)
C * (150,000<Income) 1.683*** (0.634) 0.667 (0.452) 0.622 (0.410)
D * (CARE) 0.0461 (0.0797) 0.184 (0.180) 0.0397 (0.0324)
D * (Income<25,000) 0.0379 (0.0983) -0.0907 (0.176) 0.0682 (0.0618)
D * (25,000<Income<50,000) -0.0289 (0.0543) -0.0692 (0.125) 0.0338* (0.0188)
D * (50,000<Income<75,000) 0.122* (0.0667) 0.283* (0.170) 0.127*** (0.0305)
D * (75,000<Income<100,000) 0.290*** (0.0991) 0.336** (0.168) 0.194*** (0.0490)
D * (100,000<Income<150,000) 0.0486 (0.0893) -0.0932 (0.152) 0.143*** (0.0406)
D * (150,000<Income) 0.0832 (0.121) -0.0987 (0.235) 0.122*** (0.0294)
T * C * (CARE) -0.551 (0.455) -0.671 (0.457) -0.694* (0.370)
T * C * (Income<25,000) -1.753** (0.777) -1.303** (0.604) -0.974** (0.447)
T * C * (25,000<Income<50,000) -1.418*** (0.396) -1.233*** (0.394) -1.097*** (0.337)
T * C * (50,000<Income<75,000) -1.886*** (0.497) -1.995*** (0.496) -1.727*** (0.398)
T * C * (75,000<Income<100,000) -1.895*** (0.568) -1.984*** (0.659) -1.691*** (0.524)
T * C * (100,000<Income<150,000) -1.415* (0.774) -1.339** (0.587) -1.518*** (0.514)
T * C * (150,000<Income) -2.349*** (0.701) -1.679*** (0.565) -1.497*** (0.514)
T * D * (CARE) -0.0985 (0.0891) -0.348* (0.199) -0.0119 (0.0359)
T * D * (Income<25,000) -0.0931 (0.114) -0.111 (0.214) -0.101 (0.0659)
T * D * (25,000<Income<50,000) -0.0309 (0.0678) -0.196 (0.144) -0.0393 (0.0248)
T * D * (50,000<Income<75,000) -0.120 (0.0876) -0.443** (0.206) -0.0902** (0.0439)
T * D * (75,000<Income<100,000) -0.324*** (0.112) -0.498*** (0.192) -0.177*** (0.0543)
T * D * (100,000<Income<150,000) 0.0553 (0.118) 0.255 (0.225) 0.00108 (0.0525)
T * D * (150,000<Income) -0.292** (0.139) -0.359 (0.265) -0.0852** (0.0423)
Summer Pricing -0.117 (0.0766) 0.0594 (0.0898) 0.0204 (0.0916)
Peak Degree-Hours 0.172*** (0.00783) 0.189*** (0.00833) 0.170*** (0.00713)
Off-Peak Degree-Hours in Week 1 0.0399*** (0.0112)
Constant 4.222*** (0.127) 3.994*** (0.152) 3.378*** (0.188)

Day-of-week effects
Month-of-year effects
Household fixed effects

Daily Observations
R-squared (within)
Total Number of Households

D = Number of critical peak 
days so far

D = Number of critical peak 
days in Week 1

D = Peak degree-
hours in Week 1

(1) (2) (3)

Y Y Y
Y Y Y
Y Y Y

163,035 127,007 127,007
0.167 0.181 0.196
872 863 863

Notes: The dependent variable is daily peak kWh usage. C is an indicator variable for the
occurrence of a critical peak day; D is one of the four exogenous shocks to the probability
of a loss; and T is an indicator variable equal to one for households in the pooled CPPL
and CPPH treatment groups and equal to zero for households in the control counterfactual
group. The analysis is di�erentiates results between CARE households, as well as six income
brackets of non-CARE households that provided answers to the income question in the
survey. Standard errors clustered at household level are shown in the parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 7 presents the results di�erentiated across CARE status, as well

as income levels for the non-CARE households.31 While the coe�cient on

T ú D is still negative for CARE households in all specifications, it is only

marginally significant in the specification in column 2. It does not appear

that CARE households were a strong driver of the loss aversion e�ect. Rather,

depending on the specification, households in the $50,000 to $75,000; $75,000

to $100,000; and over $150,000 annual income brackets appear to drive the

result; households in these three mid- to high-income brackets significantly

cut back on peak consumption following previous positive shocks to electricity

expenditure in that bill period.

These results do not support the hypothesis that this behavior is being

driven by households with a binding bill period budget constraint that would

cause them to face high penalties if they overspent on electricity, as electricity

expenditure for the households exhibiting this behavior constituted at most

around 2 percent of monthly household income. These results therefore sup-

port the hypothesis that this pattern is due to behavioral factors, such as loss

aversion, and not because households need to avoid overspending on electricity

because of other constraints.

V Conclusion

In this study I specify a model of loss aversion over electricity expenditure. I

use this model as a basis to derive testable predictions for consumption be-

havior of households on two critical peak pricing experimental tari�s. I use

exogenous variation in the number of critical peak days called and the peak-
31The control group is used as the counterfactual. Results with the TOU group as the

counterfactual can be seen in online Appendix F.
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period degree-hours in the bill period, which are positively correlated with

the probability of ending up in the loss domain of reference-dependent util-

ity; when households are more likely to be in the loss domain, they respond

by more strongly cutting back on peak consumption during subsequent peak

hours. The magnitude of the additional reduction in peak consumption rela-

tive to the counterfactual group was between 1.20 to 4.37 percent of daily peak

electricity consumption, depending on the positive shock to the probability of

a loss and the counterfactual group used. Additionally, I show evidence of

disproportionate clustering of bill-period expenditure around the kink in the

reference-dependent value function during pricing phases that placed house-

holds close to the kink, and particularly that otherwise would have skewed

them into the loss domain.

Finally, I explore two alternative explanations for this behavior other than

loss aversion. First, I show that the reduction in peak consumption following

positive exogenous shocks to electricity expenditure does not appear to be a

result of households learning new strategies for reducing peak consumption

when they experienced more critical peak days overall. Indeed, treatment

households actually appeared to increase their peak consumption, relatively

speaking, at a decreasing rate, the more critical peak days they experienced

overall during the pilot. This behavior is not only counter to a learning ex-

planation, but is consistent with households updating their reference point

over time. Second, I show that households exhibiting the strongest evidence

of reducing peak consumption following positive expenditure shocks tended

to be mid- to high-income households, for whom electricity expenditure only

constituted at most around 2 percent of monthly income, indicating that this

behavior does not appear to be explained by households being severely budget

constrained such that they would incur a high penalty if they overspent on
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electricity.

In essence these results demonstrate that the occurrence of critical peak

days did not only result in a reduction of peak consumption on that day, but

also spilled over to further reduction of peak consumption on regular peak days

for several weeks thereafter. This was similarly true when degree-hours were

high during high-priced periods. This form of demand adjustment resulted

in households experiencing bill-period expenditures equal to what they would

have paid on the standard time-invariant pricing tari� at a disproportionate

rate. This higher number of bill periods with equal expenditure displaced bill

periods in which they otherwise would have paid more than if they were on

standard pricing.

The results from this analysis are relevant for the design and implementa-

tion of time-based pricing structures for several reasons. First, the documented

greater e�ectiveness of CPP as compared to TOU or PTR structures found

in a number of pilots is explained somewhat by the presence of loss aversion,

as the intermittence of significantly higher prices called during critical peak

days on CPP tari�s creates variation in expenditure in the loss domain of

consumers’ reference-dependent value function. This underscores the value of

a pricing structure such as CPP from the perspective of long-term e�ciency

and sustainability of the electricity grid, as it provides a theoretical under-

pinning to support the empirical results found more generally that CPP rates

are more e�ective at reducing consumption during the highest peak demand

periods. Second, while CPP tari�s have been shown to be widely e�ective at

reducing peak consumption, there is concern that consumers dislike them, and

so would resist CPP tari�s. This dislike may stem from, in part, the compar-

ison between the status-quo reference expenditure and the expenditure on a

CPP pricing structure. A loss-averse consumer would be more likely to dislike
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a CPP pricing structure because of the nature of the variation in expenditure

on these structures. However, policies that would allow consumers to ease into

the experience of a CPP structure, or ones that would update their reference-

point in advance by providing “shadow” bills showing how much consumers

on the status-quo tari� would be paying on the CPP tari�, would be expected

to reduce the resistance to a CPP tari�.
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